Indium Tin Oxide Nanowire Networks as Effective UV/Vis Photodetection Platforms

نویسندگان

  • Songqing Zhao
  • Daniel Choi
  • Thomas Lee
  • Anthony K. Boyd
  • Paola Barbara
  • Edward Van Keuren
  • Jong-in Hahm
چکیده

We demonstrate that indium tin oxide nanowires (ITO NWs) and cationic polymer-modified ITO NWs configured in a network format can be used as high performing UV/vis photodetectors. The photovoltage response of ITO NWs is much higher than similarly constructed devices made from tin oxide, zinc tin oxide, and zinc oxide nanostructures. The ITO NW mesh-based devices exhibit a substantial photovoltage (31-100 mV under illumination with a 1.14 mW 543 nm laser) and photocurrent (225-325 μA at 3 V). The response time of the devices is fast with a rise time of 20-30 μs and a decay time of 1.5-3.7 ms when probed with a 355 nm pulsed laser. The photoresponsivity of the ITO NW devices ranges from 0.07 to 0.2 A/W at a 3 V bias, whose values are in the performance range of most commercial UV/vis photodetectors. Such useful photodetector characteristics from our ITO NW mesh devices are attained straightforwardly without the need for complicated fabrication procedures involving highly specialized lithographic tools. Therefore, our approach of ITO NW network-based photodetectors can serve as a convenient alternative to commercial or single NW-based devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution-Processed Flexible Transparent Conductors Composed of Silver Nanowire Networks Embedded in Indium Tin Oxide Nanoparticle Matrices

Although silver nanowire meshes have already demonstrated sheet resistance and optical transmittance comparable to those of sputter-deposited indium tin oxide thin films, other critical issues including surface morphology, mechanical adhesion and flexibility have to be addressed before widely employing silver nanowire networks as transparent conductors in optoelectronic devices. Here, we demons...

متن کامل

Highly Robust Silver Nanowire Network for Transparent Electrode.

Solution-processed silver nanowire networks are one of the promising candidates to replace a traditional indium tin oxide as next-generation transparent and flexible electrodes due to their ease of processing, moderate flexibility, high transparency, and low sheet resistance. To date, however, high stability of the nanowire networks remains a major challenge because the long-term usages of thes...

متن کامل

Spontaneous self-welding of silver nanowire networks.

As an alternative to the traditional indium tin oxide transparent electrode, solution-processed metal nanowire thin film has been a promising candidate due to its flexibility. However, high contact resistance between the nanowires remains a major challenge to improve the performance. Here, we have investigated a one-step process of coating and welding of nanowires on flexible film. An electric ...

متن کامل

Field Emission of ITO-Coated Vertically Aligned Nanowire Array

An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modifi...

متن کامل

Growth and characterization of ZnO/ZnTe core/shell nanowire arrays on transparent conducting oxide glass substrates

We report the growth and characterization of ZnO/ZnTe core/shell nanowire arrays on indium tin oxide. Coating of the ZnTe layer on well-aligned vertical ZnO nanowires has been demonstrated by scanning electron microscope, tunneling electron microscope, X-ray diffraction pattern, photoluminescence, and transmission studies. The ZnO/ZnTe core/shell nanowire arrays were then used as the active lay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2015